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Abstract 

 

This paper demonstrates that, for large-scale tests, the match and non-match similarity scores 

have no specific underlying distribution function. The forms of these distribution functions 

require a nonparametric approach for the analysis of the fingerprint similarity scores. In this 

paper, we present an analysis of the discrete distribution functions of the match and non-match 

similarity scores of the fingerprint data. This analysis demonstrates that a precise Receiver 

Operating Characteristic (ROC) curve based on the True Accept Rate (TAR) of the match 

similarity scores and the False Accept Rate (FAR) of the non-match similarity scores can be 

constructed without any assumption regarding operating thresholds and the forms of the 

distribution functions. The area under such an ROC curve computed using the trapezoidal rule is 

equivalent to the Mann-Whitney statistic directly formed from the match and non-match 

similarity scores. Thereafter, the Z statistic defined using the areas under ROC curves along with 

their variances is applied to test the significance of the difference between two ROC curves. Four 

examples from NIST’s extensive testing of commercial fingerprint systems are provided. The 

nonparametric approach presented in this article can also be employed in the analysis of other 

biometric data. 

 

 

 

Keywords: Fingerprint matching; Nonparametric analysis; Receiver Operating Characteristic 
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1. Introduction 

 

Recently, the National Institute of Standards and Technology (NIST) has evaluated the 

fingerprint matching from different vendors* [1,2]. These evaluations of vendors’ fingerprint-

image matching algorithms were performed using large samples of fingerprint data from a wide 

range of government sources. Several types of fingerprints (such as flat, rolled, and slap 

fingerprint images), and the fingerprint collection methods (e.g., using live scan devices, or paper 

fingerprint cards) are included in these datasets. In the SDK tests [2], a probe consisting of 6000 

of the subjects’ fingerprint images (such as left index finger, etc.), is compared against a gallery 

built from 6000 of the subjects’ fingerprint images (such as left index finger, etc.). This requires 

36,000,000 comparisons and is the smallest of the large-scale tests discussed in this paper. These 

evaluations were conducted on 19 different vendor’s fingerprint-image matching algorithms. 

 

A score generated by comparing two different fingerprint images of the same subject who 

appears both in the probe and in the gallery is called match similarity score (i.e., genuine-match 

score). A score generated by comparing two fingerprint images of two different subjects is called 

non-match similarity score (i.e., impostor-match score). The fingerprint-image matching 

algorithms tested in [1,2] are designed in such a way that the higher values of similarity scores 

tend to indicate that two fingerprint images are more similar and the lower values of similarity 

scores represent that two fingerprint images are less similar. Hence, the distribution function of 

the match similarity scores will be centered at higher scores than the distribution function of the 

non-match similarity scores. 

 

The True Accept Rate (TAR) is defined as the cumulative probability of the match similarity 

scores from the highest match similarity score at a specific similarity score. The False Accept 

Rate (FAR) is specified as the cumulative probability of the non-match similarity scores from the 

highest non-match similarity score at a specific similarity score. Based on the TAR and FAR, a 

                                                 
* These tests were performed for the Department of Homeland Security in accordance with section 303 of the Border 
Security Act, codified at 8 U.S.C. 1732. Specific hardware and software products identified in this report were used 
in order to adequately support the development of technology to conduct the performance evaluations described in 
this document.  In no case does such identification imply recommendation or endorsement by the National Institute 
of Standards and Technology, nor does it imply that the products and equipment identified are necessarily the best 
available for the purpose. 

 4



Receiver Operating Characteristic (ROC) curve can be constructed. The technology evaluations 

of fingerprint-image matching algorithms can be carried out by using ROC curves for comparing 

the performances of their corresponding algorithms. 

 

The similarity scores generated by using fingerprint-image matching algorithms are usually 

represented in integers with different ranges of values. Even though similarity scores of a 

fingerprint-image matching algorithm are expressed, for example, as real numbers ranging from 

zero to one inclusively with five significant decimal places, they can be easily converted into 

integers after multiplying by 105. Integers are much easier to be dealt with than real numbers. 

Therefore, in this article, the similarity scores are treated as discrete random variables rather than 

continuous random variables. One of benefits that can be obtained from this is that with large 

samples of fingerprint used to evaluate matching algorithms, precise ROC curves can be 

calculated. These ROCs are based upon the distribution of the match similarity scores and the 

distribution of the non-match similarity scores and can be easily constructed by moving one 

integral score at a time, i.e., without any assumption regarding the threshold of discrete similarity 

scores. 

 

The match similarity scores as well as the non-match similarity scores for large samples have no 

definite underlying distribution function, and their distribution functions vary substantially from 

algorithm to algorithm. This suggests that a nonparametric approach is pertinent to the analysis 

of the fingerprint data. Evaluation of the performance of ROC curves had been studied in depth 

in the literature. In some approaches, the TARs at a specific FAR or within a region of FARs are 

chosen to be relevant using system design criteria [1-4]. However, in other approaches, the area 

under the ROC curve is invoked [4-10]. In the cited references and references therein, the studies 

of the area under an ROC curve were mainly focused on medical practice with a small datasets. 

The biometric evaluations cited in the references [1,2] used large data sets. In the analysis of 

large amount of fingerprint data and in the evaluation of the fingerprint-image matching 

algorithms, the technique using the area under an ROC curve has not been explored [1-3]. 

 

The motivations behind using the area under an ROC curve as the criterion are twofold. First, the 

area under an ROC curve is a very important index in the analysis of ROC curves. This area is 
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equal to the probability of correctly identifying which is more likely than the other in the two 

stimuli under investigation [9-11], and it measures the overall performance of an ROC curve as a 

whole. Second, the area under an ROC curve computed using the trapezoidal rule is exactly the 

Mann-Whitney statistic directly formed, in our case, by the match similarity scores and the non-

match similarity scores [9,10,12,13]. 

 

There are two consequences of the above second point. First, the variance of the Mann-Whitney 

statistic can be utilized as the variance of the area. Second, since the Mann-Whitney statistic is 

asymptotically normally distributed regardless of the distributions of the match similarity scores 

and the non-match similarity scores thanks to the Central Limit Theorem [8,13,15], the Z statistic 

formulated in terms of areas under two independent ROC curves, generated by large-size 

fingerprint dataset, along with their variances, is subject to the standard normal distribution with 

zero expectation and a variance of one and can be used to test the significance of the difference 

of these two areas. 

 

As pointed out in the reference [9] and references therein, there are other ways to calculate the 

area under an ROC curve and its variance. In this article, the area under a precise ROC curve, 

generated from large-size fingerprint dataset, is computed using the trapezoidal rule, and thus the 

variance of the Mann-Whitney statistic is employed. The technique of using the area under an 

ROC curve as the criterion to evaluate the performance of biometric systems provides a sound 

ground for conducting statistical significance test for measuring the difference between two 

fingerprint ROC curves in a nonparametric way. Our analysis will be performed using large data 

samples without assumptions about the forms of the match and non-match score distributions. 

 

And also in this article, the detailed formulas for constructing an ROC curve, computing the area 

under an ROC curve using the trapezoidal approach, and calculating the variance of the area 

under an ROC curve derived from the variance of the Mann-Whitney statistic are provided. 

These formulas are expressed in a way that allows them to be coded easily by using arrays. This 

is very useful for dealing with large datasets, such as the data from fingerprints as investigated in 

this article. 
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The discrete distribution functions of the match and non-match similarity scores from the 

fingerprint data are explored in Section 2. Based on these distributions, a precise ROC curve is 

created, as discussed in Section 3. The area under such an ROC curve is studied in Section 4. 

Thereafter, the Z statistic computed using the areas under ROC curves along with their variances 

is applied to test the significance of the difference between two ROC curves. This is presented in 

Section 5. As the contents are presented, some examples will be provided. Finally, conclusions 

are presented in Section 6. 

 

2. The discrete distribution functions of the match and non-match similarity scores 

 

Studying the distribution function is the usual starting point of analyzing fingerprint data. The 

match similarity score set is a set of integral scores, as discussed earlier, generated by matching 

two different fingerprint images of the same subject, 

T = { si  |  ∀ i ∈ {1, …, NT}} (1) 

where NT is the total number of match similarity scores. The match similarity score set T can be 

represented in an array with NT elements, and each element records a match similarity score. 

 

Let the integral score set be {s} = {smin, smin+1, …, smax}, where smin and smax are the minimum 

and maximum similarity scores, respectively, with respect to a specific fingerprint-image 

matching algorithm for a specific application. This score set {s} consists of consecutive integers 

from smin up to smax. In Equation (1), the similarity scores si take values from the integral score 

set {s}, i.e., si ∈ {s}. But si may not exhaust all members in the integral score set {s}. In 

addition, some of the comparisons may very well share the same integral value. Therefore, the 

match similarity score set T can be partitioned into pairwise-disjoint subsets {Ts}. In each of the 

subsets, Ts, the members have the same integer s ∈ {s}. The match similarity score set T is the 

union of all these subsets {Ts}. 

 

The frequency fT(s) of the similarity score s, which appears in the match similarity score set T, is 

the size of the subset Ts that shares the similarity score s. To deal with the whole spectrum of the 

scores, the integral scores, that appear in the score set {s} but not in the match similarity score 

set T, must be included. The frequencies for these scores are obviously equal to zero. To make 
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the presentation clear, from here on, the symbol “∀ s ∈ {s}” indicates that s takes all integral 

scores from smin up to smax in the ascending order, and the symbol “∀ s ∈ { s }” means that s 

takes all integral scores from smax down to smin in the descending order. The corresponding 

probability pT(s) equals the frequency fT(s) divided by the total number of match similarity 

scores, NT, i.e., pT(s) = fT(s) / NT. Therefore, by including zero frequencies, the discrete 

frequency distribution function of the match similarity scores can be expressed in terms of the 

frequency fT(s) as 

FT = { fT(s) | ∀ s ∈ {s} and  f∑
=

max

min

s

sτ
T(τ) = NT } (2) 

And the discrete probability distribution function of the match similarity scores can be 

represented in terms of the probability pT(s) as 

PT = { pT(s) | ∀ s ∈ {s} and  p∑
=

max

min

s

sτ
T(τ) = 1 } (3) 

The discrete frequency distribution function and the discrete probability distribution function of 

the match similarity scores can indeed be expressed in arrays with smax – smin + 1 elements, and 

each element contains the frequency and the probability of the match similarity score s, i.e., fT(s) 

and pT(s), respectively. 

 

The non-match similarity score set is a set of integral scores created by comparing two 

fingerprint images of two different subjects, 

F = { si  |  ∀ i ∈ {1, …, NF}} (4) 

where NF is the total number of non-match similarity scores. By analogy with the match 

similarity scores, the discrete frequency distribution function of the non-match similarity scores 

can be formulated as 

FF = { fF(s) | ∀ s ∈ {s} and  f∑
=

max

min

s

sτ
F(τ) = NF } (5) 

where fF(s) is the frequency of the score s occurring in the non-match similarity score set F, 

including zero frequencies. And the discrete probability distribution function of the non-match 

similarity scores can be expressed as 
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Figure 1 The discrete probability distribution functions of the match and non-match similarity scores 
generated by using the fingerprint-image matching Algorithm 1. The integral similarity scores run from 0 to 
2000. The widths of peaks at the highest score and at the lowest score are enlarged to show the characteristics 
of the distributions. 

 

 

 
 

Figure 2 The discrete probability distribution functions of the match and non-match similarity scores 
generated by using the fingerprint-image matching Algorithm 2. The integral similarity scores run from 0 to 
9999. The widths of peaks at the highest score and at the lowest score are enlarged to show the characteristics 
of the distributions. 
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Figure 3 The discrete probability distribution functions of the match and non-match similarity scores 
generated by using the fingerprint-image matching Algorithm 3. The real-number similarity scores run from 
0.0 to 1.0 in five significant decimal places, which can be converted into integers. The widths of peaks at the 
highest score and at the lowest score are enlarged to show the characteristics of the distributions. 

 

 

 

 

Figure 4 The discrete probability distribution functions of the match and non-match similarity scores 
generated by using the fingerprint-image matching Algorithm 4. The integral similarity scores run from 0 to 
338. The widths of peaks at the lowest score are enlarged to show the characteristics of the distributions. 
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PF = { pF(s) | ∀ s ∈ {s} and  p∑
=

max

min

s

sτ
F(τ) = 1 } (6) 

where pF(s) is the corresponding probability, i.e., pF(s) = fF(s) / NF. By the same token, the non-

match similarity score set F, its discrete frequency distribution function FF, and its discrete 

probability distribution function PF can all be represented in arrays. 

 

Figure 1 to Figure 4 show the discrete probability distribution functions of the match and non-

match similarity scores generated by using fingerprint-image matching Algorithms 1, 2, 3 and 4 

on the same fingerprint dataset, respectively. These distributions are based upon the integer 

characteristic of similarity scores. The total number of non-match similarity scores NF is much 

greater than the total number of match similarity scores NT. In our studies, NT is 6000, and NF is 

as large as about 36 million. This means that the least probability of the match similarity scores 

is on the order of 10-4, whereas the least probability of the non-match similarity scores is on the 

order of 10-8. In order to show such small probabilities for the large amount of fingerprint data, 

the probability is depicted in logarithmic scale. 

 

In these figures many match and non-match similarity scores appear only once or twice out of 

thousands and millions of integral scores, respectively. Most importantly, despite that different 

fingerprint-image matching algorithms invoked different scoring systems, as far as the discrete 

probability distribution functions of the random similarity scores are concerned, these four 

figures show that different algorithms have different characteristics of probability distribution 

functions of the match and non-match similarity scores. 

 

For Algorithm 1, the highest match similarity score is 2000, that dominates 67.52% of the whole 

population of the match similarity scores. And other match similarity scores are distributed 

between 0 and 1999 with relatively high probabilities at higher scores and very low probabilities 

at lower scores. But the probability distribution of the non-match similarity scores is a normal-

like distribution, skewed towards higher scores. The highest non-match similarity score occurs 

almost in the middle of its score range. 
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For Algorithm 2, the highest match similarity score is 9999, which takes 8.98% of the whole 

population of the match similarity scores. The lowest one is 0, which is 0.77% of the population. 

Other match similarity scores are almost uniformly distributed between the lowest score and the 

highest score. However, the lowest non-match similarity score, 0, overwhelmingly occupies 

97.56% of the whole population of the non-match similarity scores. And other non-match 

similarity scores are just concentrated in the region from 1 through 557 with very steep-decay 

probabilities. The highest non-match similarity score appears at the very low end of its score 

range. 

 

Algorithm 1 and Algorithm 2 behave differently in the sense that Algorithm 1 tried to push 

similarity scores higher and Algorithm 2, on the contrary, tended to push similarity scores lower. 

However, there is one thing that is common between these two algorithms. That is, both of them 

attempt to separate the center of the probability distribution of the non-match similarity scores 

from the center of the probability distribution of the match similarity scores by as wide a margin 

as possible. 

 

For Algorithm 3, the real-number match and non-match similarity scores can be easily converted 

into integers as discussed before. The non-match similarity scores have a peak at the lowest 

similarity score 0.0, which counts 41.33% of the population of the non-match similarity scores 

and is separated from a normal-like probability distribution. For Algorithm 4, only very a few 

match similarity scores appear in the high-score range, the score of which is greater than 250, 

and there is also a gap between the lowest non-match similarity score zero and the second lowest 

one. 

 

All in all, from these discrete probability distribution functions, it is very important to notice that 

the match and non-match similarity scores generated by the fingerprint-image matching 

algorithms have no definite underlying distribution functions. As a consequence, a 

nonparametric analysis must be employed in order to deal with such fingerprint data. 
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3. The ROC curve of the match and non-match similarity scores 

 

Investigating the ROC curve of the match and non-match similarity scores is a way to discover 

how the discrete probability distribution functions of the match and non-match similarity scores 

are related to each other, and thus how well/bad the fingerprint-image matching algorithm works. 

The ROC curve can be used in fingerprint systems to select an operating point that gives an 

acceptable trade-off between system accuracy and reliability. An ROC curve is constructed 

based on the cumulative discrete probability distribution functions of the match and non-match 

similarity scores. 

 

From Equations (3) and (6), for the discrete match and non-match similarity scores, respectively, 

the cumulative discrete probability distribution functions can be computed by moving the 

threshold one integral score at a time from the highest similarity score smax down to the lowest 

similarity score smin. They are expressed as 

CT = { cT(s) =  p∑
=

maxs

sτ
T(τ) | ∀ s ∈ { s } } (7) 

and  

CF = { cF(s) =  p∑
=

maxs

sτ
F(τ) | ∀ s ∈ { s } } (8) 

where cT(s) and cF(s) are the cumulative probabilities of the match and non-match similarity 

scores at each integral score s from the highest similarity score smax. Therefore, in the FAR-and-

TAR coordinate system, an ROC curve of the match and non-match similarity scores is a curve 

connecting smax – smin + 1 points, ( (cF(s), cT(s)) | ∀ s ∈ {s } ), and extending to the origin of the 

coordinate system. 

 

The fingerprint-image matching algorithm for identifying the similarity of fingerprint images is 

designed in such a way that the probability distribution of the match similarity scores is centered 

at higher scores than the probability distribution of the non-match similarity scores. At the 

highest similarity score the probability of the match similarity score must be greater than the 

probability of the non-match similarity score (that may very well be zero in our case). An ROC 

curve starts from the origin of the FAR-and-TAR coordinate system and ends at the point (1, 1) 
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above the straight line that is from the origin to (1, 1). Overlap of points (cF(s), cT(s)) can occur, 

while both pF(s) and pT(s) are zero. An ROC curve goes horizontally, vertically, or inclined 

upper-rightwards at the score s, depending on whether only pF(s) is nonzero, or only pT(s) is 

nonzero, or both of them are nonzero, respectively. 

 

Except at scores at which both pF(s) and pT(s) are zero, such a precise ROC curve provides the 

same information as that nonzero pF(s) and nonzero pT(s) provide. The precise ROC curve 

uniquely and accurately represents the cumulative discrete probability distribution functions of 

the match and non-match similarity scores. Moreover, such an ROC curve is constructed directly 

from the original data, after converting to integral scores if necessary, without any assumption 

regarding the threshold. If any assumption about the threshold is made, some information from 

the probability distribution functions of the match and non-match similarity scores can be lost. 

For the discrete similarity scores it is hard to determine the correct partition of the population, if 

the threshold happens to be in a part of the population that shares the same similarity score. For 

small datasets, like those found in the medical practice, researchers always employ this type of 

ROC curve. However, for large datasets, such as data used to test fingerprint-image matching 

algorithms, there has been little discussion of such a precise ROC curve [1-3]. 

 
The ROC curves, corresponding to the four fingerprint-image matching algorithms presented in 

the previous section, are shown in Figure 5 and Figure 6. In Figure 5 a logarithmic scale is used 

for the FAR to show the performance of the ROC curve at the higher-score region of the non-

match similarity scores. In Figure 6 a linear scale is used to show the performance of the ROC 

curve at the lower-score region of the non-match similarity scores. The score range of the non-

match similarity scores varies from algorithm to algorithm, as illustrated in Figure 1 through 

Figure 4. 
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Figure 5 The four ROC curves of Algorithm 1, 2, 3, and 4, respectively, where the FAR is in a logarithmic 
scale to show the performance of the ROC curve at the higher-score region of the non-match similarity 
scores. The cross points represent the points on which the ROC curves are constructed. 

 

For Algorithm 1, the second point on the ROC curve, i.e., one point above the origin (0, 0), is at 

(0, 0.6752) (see Figure 6), due to the peak of the match similarity scores at the highest similarity 

score 2000, which dominates 67.52% of the population. The ROC curve does not leave the TAR 

coordinate axis until the highest non-match similarity score is reached. The highest non-match 

similarity score appears only once in this case, and thus its probability is a little above 10-8. At 

that point, the cumulative probability of the match similarity scores from the highest similarity 

score has already reached 89.05% (see Figure 1 and Figure 5). Furthermore, because of the shape 

of the probability distribution of the non-match similarity scores and the relative position of two 

probability distributions of the match and non-match similarity scores, the ROC curve gradually 

reaches the point (1, 1) from one side of the FAR-and-TAR coordinate system (see Figure 1and 

Figure 6). 
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Figure 6 The four ROC curves of Algorithm 1, 2, 3, and 4, respectively, where the FAR is in a linear scale to 
show the performance of the ROC curve at the lower-score region of the non-match similarity scores. The 
cross points represent the points on which the ROC curves are constructed. 

 

In contrast, for Algorithm 2, the ROC curve leaves the TAR coordinate axis when the cumulative 

probability of the match similarity scores from the highest similarity score gets to 93.47% (see 

Figure 2 and Figure 5). This is higher than 89.05% for Algorithm 1. However, it is intriguing to 

see that the ROC curve jumps from one side of the FAR-and-TAR coordinate system to the final 

point (1, 1) (see Figure 6). This is because the peak of the probability distribution of the non-

match similarity scores, occurring at the lowest similarity score 0, overwhelmingly occupies 

97.56% of the population as shown before (see Figure 2). The ROC curve of Algorithm 1 is 

generally higher than the one of Algorithm 2 in the region where the non-match similarity scores 

are more significant. This feature is evidenced by Figure 7, in which the upper parts of the ROC 

curves are shown on an enlarged scale. 
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Figure 7 Enlarged parts of ROC curves of Algorithms 1 and 2, where the non-match similarity scores are 
more significant. In this region, the ROC curve of Algorithm 1 is generally higher than the one of Algorithm 
2. The cross points represent the points on which the ROC curves are constructed. 

 

 

The same qualitative analyses can be applied to the ROC curves of Algorithm 3 and 4. The ROC 

curve of Algorithm 3 connects many more points in the FAR-and-TAR coordinate system than 

the one of Algorithm 4 (see Figure 3, Figure 4, and Figure 5). The evaluation of the performance 

of an ROC curve should take account of the whole ROC curve from the beginning point to the 

end point. 

 

For large datasets, very little computation power is needed to create a precise ROC curve. For 

instance, even for a scoring system using real-number scores ranging from zero through one with 

five significant decimal places, the total number of integer scores is just 105 plus one. Thus, the 

total number of points in the FAR-and-TAR coordinate system, which the ROC curve needs to 

connect, is not very large when compared to the computing power of the current desk-top 

computers. 
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4. The area under an ROC curve 

 

The performance of an ROC curve can be quantitatively measured using the area under the ROC 

curve. This had been studied in the literature [9-11]. The area under an ROC curve is a very 

important index, which represents the probability that, in our case, the score obtained for the 

genuine match is higher than the score assigned for the impostor match given both genuine 

match and impostor match, i.e., Prob (sG > sI), where sG is a genuine-match score and sI is an 

impostor-match score. Moreover, the area under an ROC curve computed using the trapezoidal 

rule is equivalent to the Mann-Whitney statistic [9,10,12,13], directly formed from the match and 

non-match similarity scores in our case. Therefore, the variance of the Mann-Whitney statistic 

can be utilized as the variance of the area. 

 

An ROC curve can go horizontally, vertically, inclined toward upper right, or stay where it is for 

each increment of the two cumulative probabilities, depending on whether pF(s) and/or pT(s) are 

nonzero or not. Therefore, the area under an ROC curve consists of a set of trapezoids, each of 

which is built by a rectangle and a triangle in general. The rectangle in the first trapezoid, where 

the origin of the FAR-and-TAR coordinate system and the point (cF(smax), cT(smax)) (i.e., 

(pF(smax), pT(smax))) are two corner points, does not exist. Also it is clear that the trapezoid can be 

reduced to a rectangle, a vertical line, or a point, if the zero-frequency match and/or non-match 

similarity scores are involved. 

 

Without loss of generality, in the FAR-and-TAR coordinate system, at the score s ∈ { s }, by 

including zero-frequency scores, a trapezoid is constructed by four points: (cF(s + 1), 0), (cF(s + 

1), cT(s + 1)), (cF(s), cT(s)), and (cF(s), 0), in clockwise direction, assuming cF(smax + 1) = cT(smax 

+ 1) = 0. This boundary condition corresponds to the above first trapezoid (reduced to a triangle), 

and will be applied throughout the following discussion. The lengths (cF(s) − cF(s + 1)) and (cT(s) 

− cT(s + 1)) form a triangle, and the lengths (cF(s) − cF(s + 1)) and cT(s + 1) create a rectangle. 

 

From Equations (7) and (8), it follows that at the score s ∈ { s } where the scores are counted 

consecutively in the descending order from smax to smin, the above three lengths are 
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cF(s) − cF(s + 1) = 
F

F

N
(s)f  (9) 

and 

cT(s) − cT(s + 1) = 
T

T

N
(s)f  (10) 

and 

cT(s + 1) =  ∑
+=

max

1

s

sτ T

T

N
)(f τ  (11) 

where  = 0 according to the above boundary condition. This notation will be applied 

throughout the following discussion. Therefore, the area under an ROC curve can be computed 

as 

∑
+=

max

1max

s

sτ

Â =  ∑
=

min

max

s

ss

trapezoid (s) 

    = ∑
=

min

max

s

ss

 triangle (s) + ∑
=

min

max

s

ss

 rectangle (s) 

    = 
FTNN

1  ∗  ∑
=

min

max

s

ss

f (s) ∗ [ F
2
1  ∗ f (s) +  

T ∑
+=

max

1

s

sτ

fT(τ) ] 

 

(12) 

 

where the first trapezoid at the beginning of an ROC curve is at s = smax. The summation starts 

from the highest similarity score smax and ends at the lowest similarity score smin, with scores 

taken consecutively in the descending order, including zero-frequency scores. This is because the 

ROC curve is built from the cumulative probabilities of the match and non-match similarity 

scores, respectively, from the highest similarity score smax. 

 

In order to relate the area under an ROC curve to the Mann-Whitney statistic, a nonparametric 

approach proceeds as follows. All the NF scores in the non-match similarity score set F are 

compared with all the NT scores in the match similarity score set T. If a non-match similarity 

score sF is less than a match similarity score sT, it counts 1; if equal, it counts ½; and if greater, it 

counts zero. That is, for discrete scoring, the rule invoked here for comparing non-match 

similarity scores against match similarity scores, or vice versa, can be expressed as [10] 

 19

                             1    if sF < sT  



R (sT, sF) =          ½    if sF = sT

                             0    if sF > sT

(13) 

 

By including zero-frequency scores, the first term in Equation (12) shows the total number of 

score pairs in which the non-match similarity score is equal to the match similarity score, 

weighted by ½ and divided by NTNF. And the second term in Equation (12) represents the total 

number of score pairs in which the non-match similarity score is less than the match similarity 

score, weighted by 1 and divided by NTNF. This term is the so called “the number of inversions” 

in a sequence formed by non-match and match similarity scores [15]. In other words, the area 

under an ROC curve can be re-written as 

Â = 
FTNN

1  ∗  ∑
=

NT

1sT
∑
=

NF

1sF

R (s , s ) T F (14) 

Except for the coefficient, this is exactly the Mann-Whitney statistic formed by the match and 

non-match similarity scores. As a consequence, the variance of the area under an ROC curve can 

be obtained by computing the variance of the Mann-Whitney statistic. 

 

In order to calculate the variance of the area under an ROC curve, two more cumulative 

probability distribution functions are required [10]. One of these accumulates the probabilities of 

the match similarity scores from the highest similarity score down to the score that is one score 

higher than the current score, 

QT = { qT(s) =  p∑
+=

max

1

s

sτ
T(τ) | ∀ s ∈ {s} } (15) 

And the other one accumulates the probabilities of the non-match similarity scores from the 

lowest similarity score up to the score that is one score lower than the current score, 

QF = { qF(s) =  p∑
−

=

1

min

s

sτ
F(τ) | ∀ s ∈ {s} } (16) 

where another boundary condition  = 0 is assumed. Thereafter, using Equations (3) and (6), 

the probability B

∑
−

=

1min

min

s

sτ

BTTF, that two randomly chosen genuine matches will obtain higher similarity 

scores than one randomly chosen impostor match, can be written as 

Algorithms Areas (Â) Standard Errors (SE (Â)) 
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1 0.996228 0.000544 

2 0.996002 0.000659 

3 0.974103 0.001535 

4 0.970838 0.001492 

                      Table 1 The areas under ROC curves and their standard errors for four algorithms. 

 

 

BBTTF =  p∑
=

max

min

s

ss
F(s) ∗ [qT

2(s) + qT(s) ∗ pT(s) + 
3
1  ∗ pT

2(s) ] (17) 

And the probability BBFFT, that one randomly chosen genuine match will get higher similarity 

score than two randomly chosen impostor matches, can be expressed as 

BBFFT =  p∑
=

max

min

s

ss
T(s) ∗ [qF

2(s) + qF(s) ∗ pF(s) + 
3
1  ∗ pF

2(s) ] (18) 

Finally, the variance of the area under an ROC curve is presented as [10] 

Var (Â) = 
FTNN

1  ∗ [Â (1 – Â) + (NT – 1) (BBTTF - Â ) 2

                                                  + (NF – 1) (BBFFT - Â )] 2

(19) 

 

 

The standard error of the area under an ROC curve, SE (Â), is defined as the square root of its 

variance. Since the Mann-Whitney statistic is asymptotically normally distributed due to the 

Central Limit Theorem, the margin of error with corresponding confidence level and thus the 

confidence interval for each area under an ROC curve can be accordingly constructed for large-

size fingerprint datasets. The area under an ROC curve, i.e., Equation (12), can also be expressed 

in terms of Equations (3), (6), and (15). The formulas of computing the area and its variance are 

presented in an explicitly mathematical way so that they can be easily coded using arrays. This 

will be very helpful for dealing with large datasets used for fingerprint system testing. 

 

The areas under ROC curves generated by four fingerprint-image matching algorithms along 

with their corresponding standard errors are shown in Table 1. The area of Algorithm 1 is 

slightly larger than the one of Algorithm 2. So are the areas of Algorithms 3 and 4. But the areas 
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of Algorithms 1 and 2 are both larger than the areas of Algorithms 3 and 4. However, all the 

standard errors are very small, because the areas are all very close to 1 and the sizes of the match 

and non-match similarity scores are very large [10]. 

 

The ROC curve of Algorithm 1 leaves the TAR coordinate axis in the FAR-and-TAR coordinate 

system at 89.05%, which is lower than 93.47% where the ROC curve of Algorithm 2 leaves the 

TAR coordinate axis. This relation also holds true in the region where the non-match similarity 

scores are just becoming significant (see Figure 5). However, in the region where the non-match 

similarity scores are becoming more and more significant, the relation is reversed. While the 

FAR reaches about 20%, the ROC curve of Algorithm 1 starts to be higher than the ROC curve 

of Algorithm 2 (see Figure 7). Therefore the area of Algorithm 1 is a little larger than that of 

Algorithm 2. This example shows that even if the performance of a part of an ROC curve 

produces a higher TAR value at a specified FAR value, this does not guarantee the performance 

of an ROC curve as a whole produces a higher cumulative accuracy. 

 

The area under a whole ROC curve measures the ability of fingerprint-image matching 

algorithms to produce matches over the entire range of match and non-match similarity. In this 

regard, Algorithm 1 has slightly higher matching power than Algorithm 2. Is this difference by 

chance or real? By the same token, Table 1 shows that the matching power of Algorithm 3 is 

quite close to that of Algorithm 4, but both Algorithm 1 and 2 are much better than Algorithms 3 

and 4. The same question arises. Is this difference by chance or real? All these questions can be 

resolved by the statistical significance test of the difference between two areas under the 

fingerprint ROC curves. 

 

5. Z-test of areas under two ROC curves 

 

As discussed before, the Mann-Whitney statistic is asymptotically normally distributed 

regardless of the distributions of the match similarity scores and the non-match similarity scores 

thanks to the Central Limit Theorem. Thus, the straightforward way to test the significance of the 

difference between two areas under ROC curves is the Z-test. The Z statistic is defined as the 

difference of two areas divided by the square root of the variance of two-area difference [9], and 
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it is subject to the standard normal distribution with zero expectation and a variance of one. The 

Z statistic can be expressed as, 

 

Z = 
)(Â SE )(Â SEr  2 - )(Â SE  )(Â SE

Â - Â
212

2
1

2
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+
 (20) 

 

where Â1 and Â2 are two areas, SE (Â1) and SE (Â2) are two standard errors of areas, 

respectively, and r is the correlation coefficient between two areas under ROC curves. While 

comparing the performance of two fingerprint-image matching algorithms, for two areas with 

very close values, we have no reason to believe a priori that one algorithm is likely to be better 

than the other. In such cases, the two-tailed test needs to be invoked. Otherwise, the one-tailed 

test should be employed. 

 

The two areas under ROC curves may or may not be correlated, depending on how the two ROC 

curves are constructed. For many applications in the analysis of fingerprint data, the two ROC 

curves are built based on different datasets, or different portions of the same dataset, and so on. 

Under such circumstances, two sets of match similarity scores and two sets of non-match 

similarity scores that construct the two ROC curves, respectively, do not co-vary. And thus the 

two areas are not correlated. 

 

However, in the tests discussed in this article, where two fingerprint-image matching algorithms 

are compared on the same fingerprint dataset, the two areas under ROC curves are correlated. 

They are correlated through matrix elements, and the matrix is formed by the probe and the 

gallery. Each matrix element is either match or non-match similarity score for two different 

algorithms, respectively, depending on whether or not the subject in the probe is the same as the 

subject in the gallery. Thus, such matrix elements establish the correlation between two sets of 

match similarity scores of two algorithms as well as the correlation between two sets of non-

match similarity scores, respectively, and thereafter the correlation between two ROC curves. 

 

As shown in the literature [14,15], the nonparametric Kendall’s τ is asymptotically normally 

distributed, in the null hypothesis of no association between two sets of random variables, with 
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expectation zero and a variance of (4N + 10) / 9N (N – 1) where N is the size of the dataset. For 

example, if N equals 6,000, there is only 5% probability for the absolute value of the Kendall’s τ 

to be greater than 0.0169. However, for two matches of fingerprint images, all fingerprint-image 

matching algorithms have the same tendency to assign a higher similarity score to the match 

where two fingerprint images are more similar and a lower similarity score to the match where 

two fingerprint images are less similar. Such a characteristic of fingerprint data may cause higher 

positive correlation between two sets of match similarity scores of two algorithms as well as 

higher positive correlation between two sets of non-match similarity scores. On the other side of 

the coin, this higher correlation may be reduced due to the large magnitude of the size of the 

fingerprint datasets. 

 

For four fingerprint-image matching algorithms investigated in this article, the six correlation 

coefficients between two sets of 6,000 match similarity scores range from 0.56 to 0.67. The size 

of non-match similarity score data is about 36,000,000. It is impractical to compute the Kendall’s 

τ for this size of datasets, since its complexity is O(N2). Thus, the stochastic approach is invoked. 

360,000 uniformly distributed random-sample data without replacement out of about 36,000,000 

data are taken for each iteration and the average Kendall’s τ is computed from such 10 iterations. 

The six correlation coefficients between two sets of non-match similarity scores lie between 0.07 

and 0.25. Using the table shown in the reference [9], the six resultant correlation coefficients 

between two areas under ROC curves are from 0.17 through 0.24. 

 

As shown in Table 1, as far as the value of area is concerned, Algorithm 1 is very close to 

Algorithm 2, and Algorithm 3 is quite close to Algorithm 4. However, the areas of Algorithms 1 

and 2 are greater than the areas of Algorithms 3 and 4, respectively. To simplify the presentation, 

first, the two-tailed test is conducted. For these four fingerprint-image matching algorithms, the 

pairwise two-tailed p-values of two areas under ROC curves are presented in Table 2. This table 

is symmetric. So the other part of the table is left blank. And obviously, all diagonal elements in 

Table 2 are identically equal to one. 

 

Algorithms 1 2 3 4 
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1 1.0000 0.7714 0.0000 0.0000 

2  1.0000 0.0000 0.0000 

3   1.0000 0.0862 

4    1.0000 

Table 2 The two-tailed p-values of two areas under ROC curves generated by four fingerprint-image 
matching algorithms. 

 

The two-tailed p-value between Algorithm1 and Algorithm 2 is 0.7714, which is much greater 

than 5%. According to the approach as shown in the article [9], the resultant correlation 

coefficient between two areas under ROC curves cannot be greater than the largest one of the 

two correlation coefficients that are for the match similarity scores and the non-match similarity 

scores, respectively. For Algorithm 1 and Algorithm 2, the largest one is 0.60, which is the 

Kendall’s τ between two sets of 6,000 match similarity scores. Conservatively, even if using 0.60 

for the correlation coefficient, the two-tailed p-value between Algorithm 1 and Algorithm 2 is 

0.6797, which is also much greater than 5%. This indicates that the difference between two areas 

under ROC curves for Algorithms 1 and 2, respectively, is not real but by chance. In other 

words, it is strongly assured that the performance of Algorithm 1 is most likely the same as the 

performance of Algorithm 2 at the significance level 77.14%, and at the 67.97% in conservative 

way. 

 

The two-tailed p-value between Algorithm 3 and Algorithm 4 is 0.0862 that is greater than 5% 

by 3.62%. By the same token, the conservative two-tailed p-value for Algorithms 3 and 4 is 

0.0161 that is lower than 5% by 3.39%. Thus, the performance of Algorithm 3 is likely the same 

as the performance of Algorithm 4. In all other cases, as shown in Table 2, the two-tailed p-

values are less than 0.00005 in four significant decimal places, which is way below 5%. As 

mentioned above, in all these cases, the values of areas are not quite close. Thus, the one-tailed 

test should be invoked. The one-tailed p-value is half of the two-tailed p-value. Hence, it 

unequivocally indicates that the differences between the areas under ROC curves in these cases 

are significantly real. In other words, the performances of the corresponding algorithms are most 

likely different – one is significantly better (or worse) than the other. 
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Even though the sizes of the fingerprint datasets are large, the Z statistic hypothesis test of using 

the areas under ROC curves along with their variances can be implemented. This provides a 

sound statistical ground for testing the significance of the differences between two areas under 

ROC curves that are constructed by using two different fingerprint-image matching algorithms. 

Hence, the performances of two algorithms can be evaluated concisely. 

 

6. Conclusions 

 

As illustrated in this paper, the discrete probability distribution functions of the match and non-

match similarity scores, generated by using fingerprint-image matching algorithms on the large-

size datasets, have no definite underlying distribution functions. These distributions vary very 

much from algorithm to algorithm. The Kolmogorov-Smirnov Test had been used to determine 

whether there was any relationship between the two probability distribution functions of match 

similarity scores as well as the two probability distribution functions of non-match similarity 

scores. This test indicated that no relationship existed. As a consequence, the nonparametric 

approach must be employed in the analysis of the fingerprint similarity matcher scores. 

 

Although the size of fingerprint datasets is much larger than the size of the datasets that are dealt 

with in the medical practice, a precise ROC curve can still be realistically constructed without 

any assumption to the score threshold, by moving the threshold one integral score at a time from 

the highest similarity score down to the lowest similarity score. Then, by invoking the 

trapezoidal rule, the area under an ROC curve can be calculated. This is equivalent to the Mann-

Whitney statistic directly formed from the match and non-match similarity scores. 

 

The area under the ROC curve stands for the probability that the score obtained for the genuine 

match is higher than the score assigned for the impostor match given both genuine match and 

impostor match. Therefore, to evaluate the fingerprint-image matching algorithm, the 

performance of an ROC curve as a whole rather than the performance of an ROC curve at a 

specific point or within a chosen region can be taken into account. The examples presented in 

this article have shown that even if the performance of a part of an ROC curve in one region of 

the curve produces higher TAR values, this does not guarantee that the performance of a whole 
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ROC curve is better. What ultimately matters under some operational conditions is the ROC 

curve as a whole, not a part of it. 

 

Thanks to the relation between the area under an ROC curve computed using the trapezoidal rule 

and the Mann-Whitney statistic directly formed by the match and non-match similarity scores on 

which the ROC curve is built, the variance of the area under an ROC curve can be obtained by 

calculating the variance of the Mann-Whitney statistic. In addition, the Z statistic can be 

formulated. Two-tailed test and/or one-tailed test are conducted based on how much close the 

values of two areas under ROC curves are. The Z statistic can be computed in conservative way 

depending on how to handle the correlation coefficient. 

 

The fingerprint datasets are large-size datasets, and even on the same dataset different 

fingerprint-image matching algorithms generate a wide variety of match and non-match 

distributions. Moreover, uncertainties can arise from processing and comparing fingerprint 

system test results. Under such circumstances, the Z statistic hypothesis test computed by using 

two areas under ROC curves along with their variances offers a systematic way to detect the 

statistical significance of differences between two underlying ROC curves, namely, differences 

between two performances of fingerprint-image matching algorithms. The method investigated 

in this article provides the information on which algorithm produces better results. This method 

also provides information about whether the difference is real or just by chance. Further, The 

method quantifies how much of the difference is real or how much is due to chance. 

 

The approach of analyzing the ROC curves using the area under the ROC curve has been 

successfully applied to the analysis of large samples of fingerprint data. In this article, this 

methodology is applied to comparing two fingerprint-image matching algorithms on the same 

dataset. It can also be applied, for instance, to evaluating the relations among different 

fingerprint image qualities. As a matter of fact, in general, the nonparametric approach presented 

in this article can be employed in the analysis of many kinds of biometric data. 

 

Even though the size of the fingerprint dataset is very large, the approach discussed in this article 

can be implemented without any difficulty. The match similarity scores and the non-match 
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similarity scores as the original input, the discrete probability distribution functions of the match 

and non-match similarity scores, the ROC curve, and the area under the ROC curve along with 

its variance can all be easily coded using the explicit mathematical formulas presented in this 

article. Finally, the corresponding Z statistic and the p-values can be obtained. Furthermore, the 

computing power required is not large. 
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